Talyrond® 465/485H

A revolutionary concept in roundness inspection
The Talyrond 400H
A new concept in roundness measurement

The Talyrond 400 series is unsurpassed in speed and position control making it the ideal system for high volume precision components.

High precision emulation of your manufacturing process

The all-new Talyrond 400 roundness instruments use rotary, vertical and horizontal measuring datums to duplicate your machine tool’s movement and exactly reproduce the workpiece shape. This ultra high precision simulation of the cutting tool path enables precise control of your manufacturing process.

Reproducible measurement results

Decades of experience, ultra precision machining expertise and FEA optimized design combine to provide low noise and near flawless mechanical execution of the measuring axes. Further enhancement via the use of traceable standards and exclusive algorithms effectively eliminates instrument influence from the measurement results.

Monitoring manufacturing

<table>
<thead>
<tr>
<th>Gauge Range</th>
<th>Radial Accuracy</th>
<th>Noise</th>
<th>LS Arc measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 4 mm</td>
<td>+/- 0.015 µm</td>
<td>Less than 30 nm Rq all axes</td>
<td>5 µm</td>
</tr>
<tr>
<td>Resolution</td>
<td></td>
<td>Ra values</td>
<td>Pt</td>
</tr>
<tr>
<td>Down to 0.3 nm</td>
<td></td>
<td>Less than 0.1 µm</td>
<td>0.5 µm</td>
</tr>
</tbody>
</table>
Unparalleled measurement capability

Five measurements in one

Emulating the manufacturing process with a higher degree of precision allows all features to be measured on one instrument.

1. **Roughness**
 High resolution gauge and low axis noise enables linear or circumferential surface roughness measurement.

2. **Roundness**
 Frictionless air bearing spindle and precision column for roundness, cylindricity and straightness measurements.

3. **Contour**
 Our patented calibration technique enables measurement of radius, angle, height, length, distance and more.

4. **Cylindrical mapping**
 Precision control and low noise in all axes allows in depth analysis of cylindrical components including wear scars and material volume.

5. **Cams and pistons**
 A precision encoder and linear scales in all axes enables measurement of non round parts such as cams and pistons.
Advanced harmonics – identify the cause of bad parts

Ordinary inspection might detect bad components but Talyrond 400H can help you fix the production issues that are causing them. Deviation in form on a workpiece can be broken down into irregularities that have both frequency and amplitude. Harmonic analysis identifies these imperfections allowing you to pinpoint and correct their cause, reducing the need for ever tighter tolerances on size.

- Full histogram view with tolerance bands
- Pass/Fail and warning messages
- Ranking system according to wave depth or harmonic amplitude
- Comparison to CSV or GKD files
- Up to 5000 upr
- Wave depth or harmonic amplitude format

Precision harmonic standard

A precision machined standard with the following undulations in 360 degrees:

<table>
<thead>
<tr>
<th>Upr</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>1500</td>
</tr>
</tbody>
</table>

"Giving confidence in your instrument."

3D cylindrical mapping

For production issues beyond the scope of traditional 2D inspection techniques

With high accuracy and high resolution in all axes, Talyrond 400H allows you to measure in 3 dimensions for more thorough examination of flaws, defects and cutting tool geometry effects that influence performance or lead to component malfunction.

- Twist or lead detection
- Machining defects
- Wear scar analysis
- Leak detection and more
Q-Link Production Interface
A simplified interface designed specifically for production environments

• Q-DAS accredited
• Compatible with all instruments
• Simple operation
• User levels
• Traceable fields
• Simple tolerancing
• Automatic summary reports
• Automatic statistical studies
Applications

Inner bearing races
- Harmonic analysis
- Form & radius analysis
- Roundness
- Tilt and form error to axis of rotation

Roller bearings
- Roundness

Turbo chargers
- Surface finish
- Parallelism
- Cylindricity

Crankshafts
- Parallelism
- Cylindricity
Ultra precision bearings are produced to the highest standards available. They are used in industries with a necessity for critical tolerances, high speeds and reliable performance under demanding operating conditions. Ultra precision bearings are also used in safety-critical and harsh environment applications.

Industries and applications:
- Automotive
- Aerospace
- Bearings
- Hydraulics
- Optics
- Dental and medical
- Industrial plants

“Having the responsibility to ensure 1.5 million bearings each year are manufactured to the highest quality, means controlling our components at all stages of manufacturing. We have 15 Taylor Hobson roundness measuring instruments that help us maintain high throughput and the accuracies we require to ensure every one of our bearings is of the highest quality.”

Measurement Q/A Coordinator – Leading global bearings manufacturer
Reproducing the part
Taylor Hobson’s core competencies are in cylindrical grinding, surface grinding and diamond turning. All of these disciplines coupled with knowledge in drive mechanisms go towards constructing an instrument with low noise and high geometric accuracy, ensuring reproducibility of the component.

Frictionless air bearing spindle
The instrument’s spindle axis, like any spindle based machine tool, is paramount in ensuring integrity of measurement. Utilising Taylor Hobson’s own diamond turning lathe we are able to create a reference datum unsurpassed in accuracy and reliability.

Instrument base
Using finite element analysis software, the cast iron base provides a solid foundation for both the high precision air bearing spindle and vertical straightness datum, ensuring movement and weight do not effect results. A choice of passive or active isolation mounts are available, which have been designed for either inspection laboratories or production environments.

Straightness datums
The vertical column is machined for straightness, waviness and roughness to an exacting standard, using traceable standards and techniques developed by Taylor Hobson. The straightness datums are further enhanced to ensure reproducibility of the part with little or no instrument influence.

Important features of a roundness system
1. Parallelism of column to spindle axis
2. Column and arm straightness
3. Low vertical and radial arm noise
4. Squareness of arm to spindle axis
5. Radial run-out of spindle
6. Low spindle noise
7. Minimized coning error of spindle
8. Accurate glass scales in all axes
Industry specific software

Velocity analysis allows bearing manufacturers to evaluate harmonics with respect to amplitude and predict function with respect to speed.

Traceability

Full traceability to international standards

Traceability

All calibration standards can be provided with traceability to international standards using Taylor Hobson’s own UKAS laboratory.

Roundness

Using a precision polished glass hemisphere calibrated to an uncertainty of less than 5nm Taylor Hobson can guarantee your spindle is within specification and maintain quality of results.

Straightness, squareness and parallellism

To ensure the column and radial straightness unit conform to specification we can provide standards that are either cylindrical or flat. These standards provide certainty of the measurement axes. These artefacts are combined with special software routines to enhance all axes for correct geometrical form.

Surface finish

A unique standard is available that provides measurement traceability for roughness in both a vertical and circumferential direction.

Arcuate correction (contour option)

Taylor Hobson’s patented calibration routine and calibration ball corrects for the arcuate motion of the stylus allowing dimensional measurement. This routine is critical to measurement of radius and angled parts when normal calibration routines will not suffice.

Gain correction

The TR400 series has a unique automated gain calibration for the instrument’s gauge; the routine is automated and takes a matter of seconds to set. Alternatively a set of calibrated slip blocks traceable to primary standards are also supplied.

Axis calibration

Automated or manual routines can be supplied allowing the user to set coordinates to the part or instrument axes. The optional fully automated routine calibrates the arm, column and spindle.
All the accessories you need to begin using Taylor Hobson roundness measuring systems are supplied as standard. However, for more demanding requirements or improved measurement throughput, we have a range of accessories which may be ordered separately.

Active AV mounts with environmental cabinet
Provides isolation from airflow, dust and external vibration.
code 112/4278

1 Talyrond ball calibration standard
Required for use with contour or form software, this calibration standard corrects for gain, tip and arcuate motion of the stylus.
Talyrond ball standard rad 7.5mm
(Not recommended for 4 mm range)
code 112-4305UC
Talyrond ball standard rad 12.5mm
(Not recommended for 4 mm range)
code 112-4319UC
Talyrond ball standard rad 22.5mm
code 112-4092UC

2 Calibration standard for vertical and circumferential roughness
code 112/4341 UCR

3 Precision collet chuck - removable three ball type location (for use with manual or automated tables)
Note: Collet required – see list below.
code 112/3662

code 112/3554-1.0 1 mm Collet
code 112/3554-1.5 1.5 mm Collet
code 112/3554-2.0 2 mm Collet
code 112/3554-2.5 2.5 mm Collet
code 112/3554-3.0 3 mm Collet
code 112/3554-3.5 3.5 mm Collet
code 112/3554-4.0 4 mm Collet
code 112/3554-4.5 4.5 mm Collet
code 112/3554-5.0 5 mm Collet
code 112/3554-5.5 5.5 mm Collet
code 112/3554-6.0 6 mm Collet
code 112/3554-6.5 6.5 mm Collet
code 112/3554-7.0 7 mm Collet
code 112/3554-7.5 7.5 mm Collet
code 112/3554-8.0 8 mm Collet

4 Six jaw component chuck
A 6 jaw precision scroll chuck.
Capacity - Inside diameter
20 mm - 95 mm [0.78 in - 3.74 in].
Capacity - Outside diameter
2 mm - 32 mm [0.08 in - 1.26 in].
code 112/1859 optional
code 112/3555 Adjustable End Stop
Recommended for use with 112/3549 or 112/3662; may require modification to suit the component under test.

5 Standard stylus arms
Ruby ball x 100 mm [3.9 in]
1 mm [0.039 in], code 112/3245
2 mm [0.078 in], code 112/3244
4 mm [0.157 in], code 112/3243

Bar stylus
A 100mm (3.9in) stylus for measuring small diameter components.
code 112/3489 optional

Diamond styli
Conisphere stylus with 90º included angle; required for cylindrical mapping or surface finish applications.
code 112/3806 optional 5 µm Rad
code 112/3807 optional 10 µm Rad

Kinematic dowel support set
For stable workpiece mounting.
code 112/1861 standard

Reservoir assembly kit
If the air supply is unreliable or of poor quality then the reservoir assembly is recommended to provide an even flow of air to the spindle.
code 112/2869 optional

Force setting gauge
Recommended with diamond styli and where specific stylus forces are required.
code 112/3808 optional
6 High precision glass hemisphere
For checking total system performance; UKAS calibration certificate is optional. Roundness < 0.02 µm (0.8 µ”)
code 112/2324 optional

Glass hemisphere
For checking total system performance; UKAS calibration certificate is optional. Roundness < 0.05 µm (2 µ”)
code 112/436 optional

7 High precision test cylinder
For verification of the instrument’s vertical straightness accuracy and parallelism of the vertical axis to the spindle axis. UKAS calibration certificate is optional.
code 112/3670-01 optional

Precision test cylinder
For checking the instrument’s vertical straightness accuracy and parallelism of the vertical axis to the spindle axis. UKAS calibration certificate is optional.

300 mm (11.8”) cylinder
Roundness < 0.25 µm (10 µ”)
Straightness < 0.5 µm (20 µ”)
code 112/1888 optional

500 mm (19.7”) cylinder
Roundness < 0.25 µm (10 µ”)
Straightness < 0.5 µm (20 µ”)
code 112/1997 optional

* Straightness over central 90% of test cylinder length

8 Cresting standard
For checking the vertical and horizontal alignment of the gauge head.
code 112/1876 optional

9 Flick standard
For rapid calibration of the gauge head; alternative to the standard gauge calibration set.
20 µm (788 µ”) range
code 112/2308 Optional
300 µm (0.012”) range
code 112/2233 optional

10 Calibration set
For calibrating the gauge head. The set comprises a circular glass flat and four gauge blocks. UKAS calibration certificate is optional.
code 112/2889 standard

Glass flat 250 mm (10”) diameter
For checking the straightness and alignment of the horizontal arm with respect to the spindle axis.
code 112/1998 optional

Instrument cover
To protect the instrument when not in use.
code 112/1393 optional

ECU Fuse kit
code 112/4234 optional

Pre-filter element
code 112/3351 optional

Accessory case
A useful case for carrying standard and optional accessories.
code 48/453 optional

Set of hexagonal wrench keys
To assist with minor adjustments on the instrument.
code 630/412 optional

Coalescing filter element
Secondary filter to be changed every 3 months to maintain a clear air supply. (1 included with the instrument).
code 112/3378 optional

Specifications are subject to change without notice.
Talyrond 400H specification

Analysis capability

<table>
<thead>
<tr>
<th>Standard software</th>
<th>Optional software</th>
<th>Filters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roundness</td>
<td>Parallelism</td>
<td>Piston measurement</td>
</tr>
<tr>
<td>Squareness</td>
<td>Vertical straightness</td>
<td>Commutator analysis</td>
</tr>
<tr>
<td>Concentricity</td>
<td>Partial arc flatness</td>
<td>Disk thickness variation</td>
</tr>
<tr>
<td>Conaxiality</td>
<td>Partial arc roundness</td>
<td>Velocity analysis</td>
</tr>
<tr>
<td>Slope</td>
<td>Cylindrical mapping</td>
<td>Wall thickness</td>
</tr>
<tr>
<td>Cylindricity</td>
<td>Departure from True Plane (DFTP)</td>
<td></td>
</tr>
<tr>
<td>Total run-out</td>
<td>Departure from True Circle (DFTC)</td>
<td>TalyMap Contour software</td>
</tr>
<tr>
<td>Flatness</td>
<td>Radial straightness (RSU)</td>
<td>TalyMap 3D analysis software</td>
</tr>
<tr>
<td>Eccentricity</td>
<td>Multiple plane flatness (RSU)</td>
<td>Circumferential surface finish analysis</td>
</tr>
<tr>
<td>Run-out</td>
<td>Multiple plane roundness</td>
<td>Surface finish analysis</td>
</tr>
</tbody>
</table>

Measurement capability

Column axis

<table>
<thead>
<tr>
<th>Straightness over column length</th>
<th>300 mm column</th>
<th>500 mm column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straightness over any 100mm (3.94in)</td>
<td>0.3 µm / 300 mm (11.8 µin / 11.8 in) and 0.3 µm / 500 mm (11.8 µin / 19.7 in)</td>
<td></td>
</tr>
<tr>
<td>Vertical axis to table parallelism</td>
<td>0.5 µm / 300 mm (20 µin / 11.8 in)</td>
<td>0.75 µm / 500 mm (29.5 µin / 19.7 in)</td>
</tr>
</tbody>
</table>

Horizontal arm axis

Straightness over full length of travel	0.25 µm / 200 mm (10 µin / 7.9 in)
Straightness over any 50 mm	0.125 µm + 0.000625 µm/mm (5 µin + 0.025 µin/in)
Squares to spindle axis	1 µm / 200 mm (39.4 µin / 7.9 in)

Spindle axis

- Radial limit of error (height above table): ± 0.015 µm (1.5 µin)
- Axial limit of error (radius from center): ± 0.015 µm (1.5 µin)
- Coning Error (height above table): ± 0.0003 µm/mm
- Coning Error (radius from center): ± 0.0003 µm/mm

Gauge

- High range: ± 2 mm, 0.016 µm resolution (0.0078 in range, 0.6 µin resolution)
- Normal range: ± 1 mm range, 0.008 µm resolution (0.039 in range, 0.3 µin resolution)
- Mid range: ± 0.2 mm range, 0.0016 µm resolution (0.0078 in range, 0.06 µin resolution)
- Low range: ± 0.04 mm range, 0.0003 µm resolution (0.003 in range, 0.012 µin resolution)

Component capacity

<table>
<thead>
<tr>
<th>Measuring capacity</th>
<th>300 mm column</th>
<th>500 mm column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum component height</td>
<td>300 mm (11.8 in)</td>
<td>500 mm (19.7 in)</td>
</tr>
<tr>
<td>Maximum component diameter</td>
<td>Ø 400 mm (15.7 in) [extendable to 485 mm (19.1 in)]</td>
<td></td>
</tr>
<tr>
<td>Maximum bore measuring depth (with standard length stylus)</td>
<td>TR46SH 160 mm (6.3 in) or TR48SH 155 mm (6.1 in)</td>
<td></td>
</tr>
<tr>
<td>Maximum measuring diameter</td>
<td>Ø 350 mm (13.8 in) [extendable to 450 mm (17.7 in)]</td>
<td></td>
</tr>
<tr>
<td>Maximum workable loading</td>
<td>20kg (44lb)</td>
<td></td>
</tr>
<tr>
<td>Maximum workable moment loading</td>
<td>Manual C&L: 120kg/mm (10.4lb/in) up to 25mm (0.98 in) along load line</td>
<td></td>
</tr>
</tbody>
</table>

† Vertical traverse measured with a 10 Kg load at 200 mm height; horizontal traverse measured with a 20 Kg load at 400 mm height. All measurements based on a nominally leveled glass flat using the specified stylus; analyzed using a Gaussian filter; 0.8 mm cut off, 300:1 bandwidth and parameter Rq.

* Based on measurements made within 2 mm radius of a calibrated ring or plug gauge.
Technical

<table>
<thead>
<tr>
<th>Column axis</th>
<th>300 mm column</th>
<th>500 mm column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column construction</td>
<td>Precision machined cast iron</td>
<td>Precision machined cast iron</td>
</tr>
<tr>
<td>Movement range</td>
<td>300 mm (11.8 in)</td>
<td>500 mm (19.7 in)</td>
</tr>
<tr>
<td>Speed of traverse</td>
<td>- moving: 0.25 - 105 mm/s (0.01 - 4.33 in/s) stepped</td>
<td>- moving: 0.25 - 20 mm/s (0.01 - 0.8 in/s) stepped</td>
</tr>
<tr>
<td></td>
<td>- measuring: 0.25 - 5 mm/s (0.02 - 0.2 in/s) stepped</td>
<td>- measuring: 0.5 - 5 mm/s (0.02 - 0.2 in/s) stepped</td>
</tr>
<tr>
<td>Positional control</td>
<td>+/- 5 µm (200 µm)</td>
<td></td>
</tr>
<tr>
<td>Length measurement</td>
<td>(0.03 µm/mm + 1.5 µm)</td>
<td></td>
</tr>
<tr>
<td>Minimum movement</td>
<td>0.005 mm</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>0.25 µm (0.98 µin)</td>
<td></td>
</tr>
<tr>
<td>Data points</td>
<td>200,000</td>
<td>200,000</td>
</tr>
<tr>
<td>Horizontal arm axis</td>
<td>Radial straightness unit</td>
<td>Motorized radial arm</td>
</tr>
<tr>
<td>Arm construction</td>
<td>Lapped ceramic datum</td>
<td>Extruded aluminum datum</td>
</tr>
<tr>
<td>Movement range</td>
<td>200 mm (7.9 in)</td>
<td>200 mm (7.9 in)</td>
</tr>
<tr>
<td>Speed of traverse</td>
<td>- moving: 0.25 - 15 mm/s (0.01 - 0.6 in/s) stepped</td>
<td>- measuring: 0.25 - 15 mm/s (0.01 - 0.6 in/s) stepped</td>
</tr>
<tr>
<td></td>
<td>- measuring: 0.25 - 5 mm/s (0.02 - 0.2 in/s) stepped</td>
<td>- contacting: 0.5 - 5 mm/s (0.02 - 0.2 in/s) stepped</td>
</tr>
<tr>
<td>Positional control</td>
<td>5 µm (200 µm)</td>
<td></td>
</tr>
<tr>
<td>Over-center travel</td>
<td>25 mm (0.98 in) in standard column position</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>0.25 µm (0.98 µin)</td>
<td></td>
</tr>
<tr>
<td>Minimum movement</td>
<td>0.05 mm (0.002 in)</td>
<td></td>
</tr>
<tr>
<td>Data points</td>
<td>200,000</td>
<td>200,000</td>
</tr>
<tr>
<td>Spindle axis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spindle construction</td>
<td>Precision air bearing</td>
<td></td>
</tr>
<tr>
<td>Speed of rotation</td>
<td>0.3 - 10 rpm</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>0.02° (optional ± 0.005°)</td>
<td></td>
</tr>
<tr>
<td>Positional control</td>
<td>± 0.2°</td>
<td></td>
</tr>
<tr>
<td>Number of data points (selectable)</td>
<td>3600 and 18,000 (optional 72,000)</td>
<td></td>
</tr>
<tr>
<td>Centering and leveling table</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>Patented 3 point kinematic support</td>
<td></td>
</tr>
<tr>
<td>Center and leveling table control</td>
<td>Manual</td>
<td></td>
</tr>
<tr>
<td>Centering range</td>
<td>± 5 mm (0.2 in)</td>
<td></td>
</tr>
<tr>
<td>Leveling range</td>
<td>± 0.5°</td>
<td></td>
</tr>
<tr>
<td>Worktable diameter</td>
<td>190 mm (7.5 in)</td>
<td></td>
</tr>
<tr>
<td>Gauge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gauge type</td>
<td>Talymin 6 single bias inductive transducer</td>
<td></td>
</tr>
<tr>
<td>Stylus tip force</td>
<td>0 to 4 g adjustable</td>
<td></td>
</tr>
<tr>
<td>Crutch angle</td>
<td>Adjustable (optional fixed)</td>
<td></td>
</tr>
<tr>
<td>Cresting (TR485)</td>
<td>Dual cresting facility (horizontal & vertical)</td>
<td></td>
</tr>
<tr>
<td>Gauge attitude/orientation</td>
<td>465H</td>
<td>485H</td>
</tr>
<tr>
<td>Control</td>
<td>Manual</td>
<td>Automatic</td>
</tr>
<tr>
<td>Attitude</td>
<td>Horizontal/Vertical</td>
<td></td>
</tr>
<tr>
<td>Attitude Vertical</td>
<td>Internal/External</td>
<td></td>
</tr>
<tr>
<td>Attitude Horizontal</td>
<td>Up/Down Extend/Retract</td>
<td></td>
</tr>
<tr>
<td>Orientation</td>
<td>Rotation in steps of 30°</td>
<td>Rotation in steps of 1°</td>
</tr>
</tbody>
</table>

All accuracies are quoted at 20°C ± 1°C (68°F ± 1.8°F). All roundness and flatness results are quoted as the departure from the Least Squares Circle (LSC) at 1 - 50 UPR, Gaussian filter 6 RPM, clockwise rotation (unless otherwise specified). All errors are quoted as maximum permissible errors (MPE). All straightness/parallelism results are quoted with an 8 mm cut-off, low pass filter: 3 mm/s measuring speed, Minimum Zone (MZ) reference. Quoted uncertainties are at 95% confidence in accordance with recommendations in the ISO Guide to the Expression of Uncertainty in Measurement (GUM: 1993).

Air supply

- **Air pressure**: 550 to 1030 kPa (5.5 to 8 bar) or 50 to 116 psi
- **Regulator (pre-set)**: 350 kPa (3.5 bar) (50 psi)
- **Max. particle size**: 5 micron (0.0002 in)
- **Moisture content**: -20 °C (~4 °F)
- **Flow rate at operating pressure**: 150 litres/minute (minimum) or 5.3 ft³/minute
- **Max oil content**: 25 mg/m³ (0.01 grains/ft³)
- **Solid particle content**: 5 mg/m³ (0.002 grains/ft³)

Environment

- **Operating temperature**: 10 °C to 35 °C (50 °F to 95 °F)
- **Storage temperature**: -10 °C to 50 °C (14 °F to 122 °F)
- **Temperature gradient**: < 2 °C / hour (< 3.6 °F / hour)
- **Storage humidity**: 30% to 80% relative humidity non-condensing
- **Operating humidity**: 10% to 90% relative humidity non-condensing
- **Maximum RMS vertical**: 0.05 mm/s (0.002 in/s) at < 50 Hz
- **Floor vibration**: 0.10 mm/s (0.004 in/s) at > 50 Hz

Taylor Hobson pursues a policy of continual improvements due to technical developments. We therefore reserve the right to deviate from catalog specifications.
Talyrond 400H floor plan

Small DPU Desk

112-3350

PC / ECU Cabinet

112-4299

Talyrond 400H with desk

Talyrond 400H with cabinet

Talyrond 400H with desk

Optional cabinet

Nominal instrument weight: 299kg (658lb)

Nominal instrument weight: 282kg (620lb)

Nominal instrument weight: 276kg (610lb)
Parameters

<table>
<thead>
<tr>
<th>Type of analysis</th>
<th>Measurement mode</th>
<th>Evaluation diagram</th>
<th>Talyrond 400H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roundness</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Parallelism</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Cylindricity</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Straightness</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Radial Runout</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Radial</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Squareness</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Parallelism</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Measure Interrupted Surface</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Harmonic Analysis</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Thickness Variation</td>
<td></td>
<td></td>
<td>●</td>
</tr>
</tbody>
</table>

✓ = Included ● = Optional ✗ = Not available

(Customer specific analysis available on request)
Serving a global market

Taylor Hobson is world renowned as a manufacturer of precision measuring instruments used for inspection in research and production facilities. Our equipment performs at nanometric levels of resolution and accuracy.

To complement our precision manufacturing capability we also offer a host of metrology support services to provide our customers with complete solutions to their measuring needs and total confidence in their results.

Contracted services from Taylor Hobson

Sales department
Email: taylor-hobson.sales@ametek.com
Tel: +44 (0)116 246 2034
- Design engineering
 special purpose, dedicated metrology systems for demanding applications
- Precision manufacturing
 contract machining services for high precision applications and industries

Service department
Email: taylor-hobson.service@ametek.com
Tel: +44 (0)116 246 2900
- Preventative maintenance
 protect your metrology investment with an Amecare support agreement

Centre of Excellence department
Email: taylor-hobson.cofe@ametek.com
Tel: +44 (0)116 276 3779
- Inspection services
 measurement of your production parts by skilled technicians using industry leading instruments in accord with ISO standards
- Metrology training
 practical, hands-on training courses for roundness and surface finish conducted by experienced metrologists
- Operator training
 on-site instruction will lead to greater proficiency and higher productivity
- UKAS calibration and testing
 certification for artifacts or instruments in our laboratory or at customer’s site

Taylor Hobson UK
(Global Headquarters)
PO Box 36, 2 New Star Road
Leicester, LE4 9JQ, England
Tel: +44 (0)116 276 3771 Fax: +44 (0)116 246 0579
e-mail: taylor-hobson.uk@ametek.com

Taylor Hobson France
Rond Point de l’Epine Champs
Batiment D, 78990 Elancourt, France
Tel: +33 130 68 89 30 Fax: +33 130 68 89 39
taylor-hobson.france@ametek.com

Taylor Hobson Germany
Postfach 4827, Kreuzberger Ring 6
65205 Wiesbaden, Germany
Tel: +49 611 973040 Fax: +49 611 97304600
taylor-hobson.germany@ametek.com

Taylor Hobson India
1st Floor, Prestige Featherlite Tech Park
14B, EPP II Phase, Whitefield, Bangalore – 560 006
Tel +91 1860 2662 468 Fax: +91 80 6782 3232
taylor-hobson.india@ametek.com

Taylor Hobson Italy
Via De Bari
20087 Rebecco sul Naviglio, Milan, Italy
Tel +39 02 946 93401 Fax: +39 02 946 93450
taylor-hobson.italy@ametek.com

Taylor Hobson Japan
3F Shibuya NBF Tower, 1-1-30, Shibuya Daimon Minato-ku
Tokyo 105-0012, Japan
Tel: +81 (0) 3 6809-2406 Fax: +81 (0) 3 6809-2410
taylor-hobson.japan@ametek.com

Taylor Hobson Korea
#310, Gyeonggi R&D Center, 906-5, luir-dong
Yeongtong-gu, Suwon, Gyeonggi, 443-766, Korea
Tel: +82 31 888 5255 Fax: +82 31 888 5256
taylor-hobson.korea@ametek.com

Taylor Hobson China (Beijing Office
Western Section, 2nd Floor, Jing Dong Fang Building (B10)
No.10, Jiu Xian Qiao Road, Chaoyang District, Beijing, 100015, China
Tel: +86 10 8526 2111 Fax: +86 10 8526 2141
taylor-hobson.beijing@ametek.com

Taylor Hobson China (Shanghai Office
Part A,1st Floor, No.460 North Fute Road, Waiagqiao
China (Shanghai) Pilot Free Trade Zone, 200131
Tel: +86 21 5668 5111-110 Fax: +86 21 5668 0969-110
taylor-hobson.shanghai@ametek.com

Taylor Hobson Singapore
AMETEK Singapore, 10 Ang Mo Kio Street 6S
No.05-12 Techpoint, Singapore 569059
Tel: +65 6484 2388 Ext 120 Fax: +65 6484 2388 Ext 120
taylor-hobson.singapore@ametek.com

Taylor Hobson USA
1725 Western Drive
West Chicago, Illinois 60185, USA
Tel: +1 630 621 3099 Fax: +1 630 231 1739
taylor-hobson.usa@ametek.com

www.taylor-hobson.com